Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

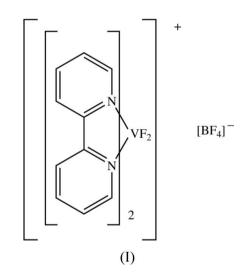
Savaridasson Jose Kavitha,^a Krishnaswamy Panchanatheswaran,^a John N. Low^b and Christopher Glidewell^c*

 ^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India,
^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.004 Å R factor = 0.048 wR factor = 0.133 Data-to-parameter ratio = 15.7

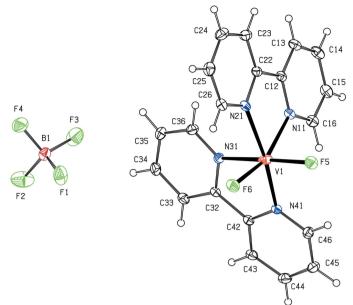

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Racemic *cis*-bis(2,2'-bipyridyl)difluorovanadium(III) tetrafluoroborate

The title compound is a salt, $[V(C_{10}H_8N_2)_2F_2]BF_4$, in which pairs of cations, one each of Λ and Δ configuration, are linked by a centrosymmetric π - π stacking interaction. Received 6 September 2005 Accepted 7 September 2005 Online 14 September 2005

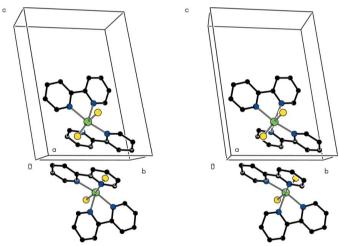
Comment

The title compound, $[V(bipy)_2F_2]^+ \cdot [BF_4]^-$ (bipy is 2,2'bipyridyl), (I), was obtained as an adventitious by-product from the attempted preparation of [bis(2,2'-bipyridyl)(2,4pentanedionato-O,O')vanadium(III)] tetrafluoroborate, $[V(bipy)_2(CH_3COCHCOCH_3)]^+ \cdot [BF_4]^-$, from tris(2,4pentanedionato-O,O')vanadium(III), $[V(CH_3COCHCO CH_3)_3]$. The formation of (I) can be described as the complete displacement of the ligands in tris(2,4-pentanedionato-O,O')vanadium(III) and coordination instead of neutral 2,2'bipyridyl and of fluoride ions resulting from the adventitious hydrolysis of part of the tetrafluoroborate component.



The cations in (I) are chiral with approximate, but not exact, local C_2 symmetry. However, the centrosymmetric space group $P\overline{1}$ accommodates equal numbers of Λ and Δ enantiomers; the selected reference cation (Fig. 1) has the Λ configuration. The individual bond angles (Table 1) around the octahedrally coordinated metal centre show some considerable deviations from the ideal values of 90 and 180°, ascribable both to the rather small bite angles, ca 75°, of the bipyridyl ligands, and to the mutual repulsion of the two F ligands. The V–N bonds *trans* to the F ligands are significantly longer than the V–N bonds *trans* to a bipyridyl N atom.

In the two independent bipyridyl ligands, the dihedral angles between the two ring planes are 3.0(2) and $8.5(2)^{\circ}$ for the ligands containing atoms N11 and N31, respectively. The


© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

The ionic components of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

A stereoview of part of the crystal structure of compound (I), showing a pair of enantiomeric cations linked by a π - π stacking interaction. For the sake of clarity, H atoms have been omitted.

chelate ring containing atoms N11 and N21 is effectively planar, but that containing atoms N31 and N41 is distinctly puckered, adopting an envelope conformation with the ring folded across the N31···N41 vector.

The cations are linked into centrosymmetric pairs by means of a single aromatic π - π stacking interaction. The bipyridyl rings N11/C12–C16 at (x, y, z) and N21/C22–C26 at (1 - x, z)(1 - y, -z) are almost parallel, with a dihedral angle between them of only $3.0(2)^{\circ}$. The ring-centroid separation is 3.56 (2) Å, and the interplanar spacing is ca 3.40 Å. This interaction thus links a racemic pair of cations across the centre of inversion at $(\frac{1}{2}, \frac{1}{2}, 0)$ (Fig. 2).

There are short $C-H \cdots F$ contacts, both between cations and between cations and anions (Table 2). Although interactions of this type are exceptionally weak (Howard et al., 1996), the concerted effect of cation ... anion interactions involving three of the four F atoms in the anion may contribute to the restricted librational motion of the anion, which in simple salts often shows significant evidence for motion and/or disorder.

Experimental

A solution of tris(2,4-pentanedionato-O,O')vanadium(III) (0.3 g)and 2-(2'-pyridyl)pyridinium tetrafluoborate (0.42 g) in methanol (30 ml) was heated under reflux for 3 h in a dinitrogen atmosphere. After cooling of the reaction mixture, the solvent was removed under reduced pressure to yield the title compound, (I). Red crystals of (I) suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in acetone (m.p. 488 K, with charring).

Z = 2

 $D_x = 1.640 \text{ Mg m}^{-3}$

Cell parameters from 4541

 $0.24 \times 0.22 \times 0.04 \text{ mm}$

4541 independent reflections

3970 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 3.6 - 27.5^{\circ}$ $\mu = 0.57~\mathrm{mm}^{-1}$

T = 120 (2) K

Plate, red

 $R_{\rm int}=0.033$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h=-10\rightarrow 10$

 $k = -12 \rightarrow 12$ $l = -17 \rightarrow 17$

Crystal data

[V(C₁₀H₈N₂)₂F₂]BF₄ $M_r = 488.12$ Triclinic, $P\overline{1}$ a = 8.0518 (2) Å b = 9.3238 (2) Å c = 13.5469 (3) Å $\alpha = 96.3421 \ (12)^{\circ}$ $\beta = 100.2723 (14)^{\circ}$ = 94.9660 (13)° V = 988.70 (4) Å³

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.875, \ T_{\max} = 0.977$ 20038 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0576P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 0.8934P]
$wR(F^2) = 0.133$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.17	$(\Delta/\sigma)_{\rm max} < 0.001$
4541 reflections	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		
Selected geometric parameters	(Å,	°).

		·	
V1-N11	2.1823 (19)	V1-N31	2.2247 (19)
V1-N21	2.114 (2)	V1-N41	2.1082 (19)
V1-F5	1.7232 (15)	V1-F6	1.7389 (15)
F5-V1-N11	88.08 (7)	N11-V1-N21	75.01 (7)
F5-V1-N21	99.97 (7)	N11-V1-N31	80.02 (7)
F5-V1-N31	160.97 (8)	N11-V1-N41	98.59 (7)
F5-V1-N41	92.76 (7)	N21-V1-N31	91.30 (7)
F6-V1-N11	160.98 (8)	N21-V1-N41	165.44 (8)
F6-V1-N21	90.18 (7)	N31-V1-N41	74.59 (7)
F6-V1-N31	88.60 (7)	F5-V1-F6	106.51 (7)
F6-V1-N41	92.94 (7)		

Table 2		
Geometry of short inter-ion contacts	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···F5 ⁱ	0.95	2.50	3.265 (3)	137
$C14-H14\cdots F5^{ii}$	0.95	2.42	3.145 (3)	133
C16-H16···F3 ⁱⁱⁱ	0.95	2.50	3.402 (3)	158
$C24-H24\cdots F2^{iv}$	0.95	2.47	3.279 (4)	143
$C33-H33\cdots F6^{v}$	0.95	2.42	3.209 (3)	140
C34-H34F1	0.95	2.55	3.227 (3)	129
$C43\!-\!H43\!\cdots\!F6^v$	0.95	2.46	3.180 (3)	132

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y, z - 1; (v) -x + 2, -y + 1, -z + 1.

All H atoms were located in difference maps and subsequently treated as riding atoms, with C–H distances of 0.95 Å and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97*

(Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK; the authors thank the staff for all their help and advice.

References

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). *Tetrahedron*, **52**, 12613–12622.

McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.